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Abstract

The verification of a local minimizer of a general (i.e., nonconvex) quadratic
program is in general an NP-hard problem. The difficulty concerus the op-
timality of certain points (which we call dead points) at which the first-order
necessary conditions for optimality are satisfied, but strict complementarity
does not hold.

One important class of methods for solving general quadratic programmirg
problems are called inertia-controlling quadratic programming (ICQP) meth-
ods. We derive a computational scheme for proceeding at a dead point that is
appropriate for a general ICQP methed.

e

Keywords: Quadratic programming, local minimizer, NP-hardness.

1. Introduction

The general quadratic programming problem is to find a local minimizer of a quad-
ratic funciion subject to linear constraints. In this paper, the problem considered
is of the form

N . . T 1 T
minimize z)y=c'z+zz'Hz

IE_:‘R" 99( ) 2 (11)
subject to Az > [,
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Local Minimizers in ICQPs

where the Hessian matrir H is symmetric, and A is an my, X n matrix. Of particular
interest is the nonconvex case where /f has an arbitrary distribution of positive,
negative and zero eigenvalues.

Our attention will focus on the class of inertia-controlling methods for general
quadratic programming. Inertia-controlling quadratic programming (1CQP) meth-
ods use a linearly independent subset of the constraints known as the working sct
to define a search direction and multiplier estimates. A unique feature of ICQP
methods is that constraint deletions are restricted so as to control the inertia of
the reduced Hessian, which is never permitted to have more than ouc nonpositive
cigenvalue. Fletcher [Fle71] proposed the first ICQP method, and various methods
within this class have also been proposed, see for example Gill ¢t al. [GMSW84] and
Gould [Gou86].

For any nonconvex quadratic program there may exist certain dead points at
which all quadratic programming methods will find it difficult to proceed (see Sec-
tion 2.6, for a precise definition of a dead point). The difficulty arises because tle
verification of such a point as a local minimizer of (1.1) is an NP-hard problem—
see Murthy and Kabadi [MK8&7] and Pardalos and Schritger [PS88]. Uulortunately.
even if lower values of ¢ do exist in the neighborhood of a dead point, any number of
constraints may need to be deleted simultaneously in order to compute a direction
of immprovement. Since existing ICQP methods can delete only one constraint at a
time, they may be unable to proceed from a dead point.

The difficulties associated with existing ICQP methods at a dead point may he
contrasted with the difficulties associated with the simplex method at a degenerate
vertex. The simplex method is able to keep iterating at a degenerate vertex, but it
may be necessary to perform a (possibly infinite) number of iterations during which
the working set changes, but the vertex remains the same. By contrast, existing
ICQP methods may terminate prematurely at a dead point which is not a local
minimizer.

If progress is to be made at a dead point, a scheme must be devised for the iden-
tification and simultancous deletion of more than one -i~-t-aint from the working
set. The computational and theoretical properties of .1:*h » scheme are presented
in this paper. In Section 6 we show that at a dead pc.  the proposed method
behaves in a similar way to the simplex at a degenerate vertex—-i.e., the aigorithm
is able to proceed, but there exists the danger of cycling. In order to guarantee
finite termination, it is necessary to introduce procedures (such as a lexicographic
ordering) similar to the anti-cycling procedures used in the simplex method.

In an ICQP method, the reduced Hessian is required to be positive definite at the
starting point. In order to ensure this, it might be necessary to introduce artificial
constraints. (The importance of such constraints is explained in Section 2.5.) Un-
‘~rtunately, the presence of these constraints may introduce additional dead points
which are not present in the original problem. However, we show that the com-
putational scheme derived is able to treai thc artificial-constraint case so that the
artificial constraints cause no additional difficulties.

In order to describe the new scheme, we first review results on necessary and
sufficient conditions for optimality in general quadratic programming. For a discus-
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sion of these conditions, see for example Majthay [Maj71], Mangasarian [Man80),
Contesse [Con80] or Borwein [Bor82]. The results presented here allow the presence
of artificial constraints in the working set.

2. Basics

2.1. Notation
The following notation will be used throughout the paper:
The vector z denotes a feasible point of (1.1) to be examined.

The matrix A denotes the working-set matrix at z, and b denotes the associated
right-hand side vector.

The scalar m denotes the number of rows in A.

The matrix Z denotes a matrix whose columns form 2 basis for the nullspace of A;
the reduced gradient and reduced Hessian of ¢ with respect to A are then Z7g(z)
and ZTHZ.

The vector g denotes the gradient of ¢ at z,ie., 9= Hz + c.

2.2. Terminology

The following terminology will be used:

descent direction if ¢%p<o.
direction of positive curvature if pTHp > 0.
A vector p is said to be a { direction of negative curvature if pTHp < 0.
direction of zero curvature ii pTHp=0.
feasible direction if Ap>0.

A matrix D is said to be copositive if vIDv > 0 for all v > 0.

activeat z  if afz = §;.
A constraint alz > f; is said to be { inactiveat z if afz > ;.
violated at = if aiTa: < B;.

2.3. Assumptions ?5ston For
D RT3 § P

The following assumptions are made: T 0

B BRI R | r=
4

A1l. The objective function, ¢, is bounded from below in the feasible region. 'F:36: . o |

A?2. All constraints active at z are in the working set.

A3. The working-sel 1aatrix A has ful) row rank. boAvass stlIte (g ey i

' Atall s/ or




4 Local Minimizers in ICQPs

A4. The point x satisfies the first-order necessary conditions for optimality, i.e.,
there exists a nonnegative Lagrange multiplier vector g such that z and g
satisfy the Karush-Kuhn-Tucker equations

H AT -
=) _ <), (2.1)
A0 —u) T b
A5. The reduced Hessian, ZTH Z, is positive definite.

2.4. The inertia of a matrix

Let M be any symmetric matrix. We denote by i,(M), i,(M ) and i,( M ) respectively
the (nonnegative) numbers of positive, negative and zero eigenvalues of M. The
inertia of M —denoted by In(Af)—is the associated integer triple (ip,1,,2;). The
following lemma states an important relationship between the inertia of the KA T-

matrizc r
K= i A
A 0

Lemma 2.1. Given assumptions A3 and A5, the inertia of the KKT matriz K is
(n,m,0).

and the reduced Hessian.

Proof. Sce Gould [Gou85, Lemma 3.4]. 8

Lemma 2.1 implies that K is nonsingular, so that the Lagrange multipliers in
(2.1) are unique.

2.5. Inertia-controlling methods for quadratic programming

Associated with each iteration of an ICQP method is a linearly independent subset
of the constraints known as the working set. The working set at the initial point zg
must be chosen so that the reduced Hessian is positive definite. Thereafter, working
set changes by only one constraint at each iteration and the reduced Hessian is never
permitted to have more than one nonpositive eigenvalue.

ICQP methods depend critically on a procedure for finding an initial working
set with an associated positive-definite reduced Hessian. In order to ensure that
the reduced Hessian is positive definite, the initial working set may need to include
“artificial” constraints that are not specified in the original problem. The only re-
quirement for an artificial constraint is linear independence from constraints already
in the working set. Artificial constraints do not restrict the feasible region, since the
direction of the inequality need not be defined. As soon as an artificial cousiraint
can be removed from the working set, it is eliminated from the problem. The strat-
egy for choosing artificial constraints depends on the mechanics of the particular QP
method and procedures for finding the initial working set are usually dependent on
the method used to solve the KKT system. A simple example of a problem requiring
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artificial constraints is given in Section 5. We emphasize that artificial constraints
ate not part of the originai problem, but are an artefact of the solution inethod.
I'lie original constraints of the problem are referred o as reqular constraints.

Once a constrained minimizer is found, an ICQP algorithm proceeds by deleting
one constraint from the working set and finding either a feasible descent direction
or a feasible direction of negative curvature. The constraint deletion is permitted
only if the reduced Hessian is positive definite.

All ICQP methods generate search vectors and multipliers that satisfy the KK'T
equatious. However, the equations may be solved either implicitly or explicitly, iu
which case one ICQF aigorithm may appear to be v.ry different from another. In
this paper, only the form of equations to be solved is stated. [or a discussion on
the relationship between different TCQP methods, see Gill et al. [GMSW8S].

Dead points with only reg .lar constraints will be treated first. In Section 5, we
consider the case when artificial constraints are present.

2.6. Dead points

It A contains only regular constraints, a dead point is defined to be a point satisfving,
assunmptions A4 and A5 for which one or more components of the Lagrange multiplier
vector o are zero. We emphasize that such a point may not be a local minimizer.

Since a dead point satisfies the first-order necessary conditions for optimality,
there exists no feasible descent direction. Therefore, it is necessary to find a feasible
direction of negative curvature if an ICQP method is to proceed to find a local
minimizer. Unfortunately, it may be impossible to compute a feasible direction of
negative curvature by deleting only one constraint at a time, as can be seen from
the following problem.

minimize —z;I9
IERz Y
subject to 0< z; <1 (2.2)
0 S I S 1.

If the starting point is the origin, and both active constraints are in the working
~et, assumptions A1-AS5 are satisfied. However, if either of the constraints is deleted
from the working set, the resulting reduced Hessian is positive semidefinite and
~ingnlar. Therefore, no feasible direction of negative curvature may be compuied by
deleting only one constraint. No more than one constraint may be deleted from the
working set, since constraint deletion is permitted only when the reduced Hessian is
positive definite. Therefore, an ICQP method must terminate at this point, although
the origin is not a local minimizer for the QP.

In this situation—where neither a feasible descent direction nor a feasible di-
rection of negative curvature may be found by deleting only one constraint-—it is
necessary to develop a scheme for deleting more than one constraint simultanecously
if an ICQP method is to proceed.
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2.7. Optimality conditions

In this section, necessary and sufficient conditions for z to be a local minimizer
under assumptions A1-A5 are reviewed. It will be useful to distinguish between
constraints with positive and zero multipliers. Without loss of generality we may
assume that the rows of A are ordered such that

A= Ay
A, |’

where A, corresponds to rows with positive Lagrange multipliers and A, corresponds
to rows with zero Lagrange multipliers. Let m, denote the number of rows in
A,. and let m, denote the number of rows in A,. Also, let z, denote the vecior
containing the m, positive components of u.

The following two necessary and sufficient conditions for z being a local mini-
mizer for (1.1) when assumption A2 holds are given by Majthay [Maj71]) and Con-
tesse [Con80].

C1l. The point z satisfies the first-order necessary conditions for optimality, i.e.,
there erists a nonnegative Lagrange multiplier vector p, such that z and u
satisfy the KKT equations

H AT g\ [ -c
A 0 - ) b )
C2. It holds that dTHd > 0 for all d such that A,d =0 and A,d > 0.

In his proof, Contesse derives an alternative formulation of Condition C2 involv-
ing the set of generators for the finite cone

{p| Ayp =0, Aep 2 0}.
This formulation is described in Theorem 3.1 below. For the sake of completeness,

Contesse’s proof is reviewed with a notation relevant to our assumptions.

3. A Proof of the Optimality Conditions

Let Y, denote the m, X n matrix whose j-th column y, ; is defined to be the unique
vector satisfying the equation

H AT AT Vi 0
A, 0 0 - p; =1 ¢ 1, (3.1)
A, 0 0 -7 0

and let Y, denote the my, x n matrix whose j-th column y,; is defined to be the
unique vector such that

i AT AT Yo 0
A, 0 0 -A (=10 |. (3.2)
A, 0 0 -6, €
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Equations (3.1) and (3.2) imply that the computation of y,; and y,, involves
solving the KKT equations with a unit right-hand side. For a detailed discussion nf
the properties of the KKT equations in this context, see Gould [Gou86, Theorem
2.3].

Given Y, and Y;, let M denote the n x n matrix M = ( Z Y, Y, )

Lemma 3.1. The matriz M is nonsingular.

Proof. It is enough to show that the columns of M are linearly independent. Assume
that
Mv=2Zv, + Y, v, + Yyu, = 0.

Successive premultiplication of AMfv by A, and A, gives v, = 0 and v, = 0. Since
the columns of Z are independent, it follows that v; = 0. B

Lemma 3.2. The sets
{plAp20} and {p|p=Zvs+Y,v, + Yov, vy 20, v, > 0}
are identical.

Proof. We may write p in the form p = Zv, + Y, v, + Y,v,, where v, and v, are
nonnegative vectors. Premultiplication of p by A yields

oe () (2)2(0)

From Lemma 3.1 it follows that the columns of Z, Y, and Y, span ®". However, if
any component of v, or v, is negative, the vector Ap will have at least one negative
component. R

Verification of the optimality of z is now equivalent to finding a local solution
of the quadratic program
. e . T 1 T
minimize g'p+sp Hp
peR™ (3.3)
subject to Ap > 0.

Lemma 3.3. The vector z is a local minimizer of (1.1) if and only if zero is a local
minimizer of (3.3).

Proof. The Taylor-series expansion of ¢ gives g7p + %pTHp = ¢(z+p)—¢(z). The
vector Ap is nonnegative if and only if A(z + p) > Az. Since every active constraint
is included in A, the point r will not be a local minimizer of (1.1) if and only if
there exists an infinite sequence {z¥}32, converging to z such that Az* > b and
o(z¥) < p(z). We need consider only those constraints in the working set because
assumption A2 guarantees that if {z¥}22, converges to z, all other constraints will
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be satisfied for & sufliciently large  Similarly, the zero vector will not be a local
minimizer of (3.3) f and only if there exists an intinite sequence {p“'},;‘:} converging
to zero such that Ap* > 0 and ¢Tp* + %kaHp" < 0. The proof is complete if we let
rk =r + 1)1‘. | |

Lemma 3.4. All elements of the matrices ZTHY, and ZTHY, arc zero.

Proof. Direct substitution in (3.1} yields ZTHy” =0forj=1,....m, and direct
substitution in (3.2) vields ZTHy,, = 0forj=1.....m,. 8

Lemmas 3.3 and 3.1 are now combined to show that the verification of r as a
local minimizer is achieved by solving the QP problem
minigenize phe, + LTz 70, + %l'zv)';f HY v, + VIYTHY o+ 5oV Y v,
rERT e 2
subjoct to v, > 0. v, 2 0.
(3.1)

Lemma 3.5. The vector & is a local minimizer of (1.1) if and only if zero is a local
minimizer of (3.4).

Proof. Problem (3.4) is derived from problem (3.3) by using the transformation
p=Mv=27Zv,+Y,v, + You,.

Assumption Ad, equations (3.1) and (3.2), and Lemma 3.4 are used to simplify the
objective function. The feasible region is obtained by using Lemma 3.2, Finally.
Lemma 3.3 implies that ~ero is a local minimizer of (1.1) if and only if it is a local
minimizer of (3.4). 1

Using these results it is possible to pose the problem of determining local opti-
mality as a copositivity problem, as the following theorem shows.

Theorem 3.1. (Contesse [Con80)) The point x is a local minimizer of (1.1} if
and only if YOTH Y, is copositive.

Proof. Assume that Y,JITY, is not copositive. T"“en there exists a nonnegative
vector v, such that 1)3)’07‘11}’0 v, is negative and zero is not a local minimizer of (3.4).
LLemma 3.5 implies that z is not a local minimizer of (1.1).

Assume that YOTII Y, is copositive. If zero is not a local minimizer of (3.4), there

must exist an infinite sequence {v¥}72, converging to zero such that
v + 3ETZTH Z08 + LA TYTHY, of + ¥ TYT Y of + $o8 TV Ty 0k < 0,

where v¥ and v¥ are nonnegative. Since ZTHZ is positive definite and YIHY, is
copositive, it must hold that

plok + Lok Ty T iy o + XY T HY,WE < 0.
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At least one component of v¥ must be positive, since the left-hand side is zero when
zvf is zero. Since jt, is a positive vector, it must have a positive least component

fimin- and we may write
peiae V8 + 30X TYIHY o + XY HY, v < 0,

where € is a suitably dimensioned vector with unit components. If both sides of this

last equation are divided by the positive quantity eva, we obtain the inequality
I v Ve e 1 e
fmin + =7 S IVIHY o + ¥ TYTHY 0] < 0. (3.5)
2el0f e'vs

If we now consider this inequality as k goes to infinity, we note that pin,in must be
nonpositive, which contradicts the assumption that u, is a positive vector. Hence,
the zero vector is a local minimizer of (3.4) and Lemma 3.5 implies that z is a local
winimizer of (1.1}. 1

From this theorem, it follows that if we are able to check the m, x m, matrix
Y.THY, for copositivity, we are able to determine if z is a local minimizer.

4. On the Copositivity of a Matrix

It was shown in the previous section that the verification of optimality of a dead
point r is equivalent to checking if the m, x m, matrix Y,JHY, is copositive. Once
Y, is computed, the matrix Y,JHY, may be calculated by performing direct matrix
multiplications. However, the following lemma shows that the m, solutions of the
equation (3.2) for j = 1, ..., m, provide the matrix Y,JHY,.

Lemma 4.1. If 8, satisfies (3.2), then Y,THY,e; = 0; forj=1,..., mg.
Proof. Direct substitution in (3.2) yields y Hy,; = eld,. @

Copositive matrices have been studied extensively (see, e.g., Cottle et al. {CHL70]
and Pereira [Per72]). The problem of deciding if a given matrix is copositive has beei
shown to be NP-hard, see Murty and Kabadi [MK87] and Pardalos and Schnitger
[PS88]. Therefore, no computationally tractable method for solving the general
problem is known.

However, there are special situations in which a matrix may be simply checked
for copositivity. Two such situations are discussed in the following lemmas.

Lemma 4.2. If the elements of the matriz YQTHYO are nonnegative, it is copositive.
Proof. If ¥,7/lY, is not copositive, there must exist a nonnegative vector v, such

that oTY,TH Y,v, < 0. This is clearly impossible if all elemeuts of Y,HY, are noa-
negative. 1
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Lemma 4.3. If a diagonal element of YOTH Y,, say yL Hl y,; is negative, the matrir is
not copositive. Morcover, the vector yoi is a feasible direction of negative curvature.

Proof. If yL Iy, < 0. then clearly yo, is a direction of negative curvature. Lemma
3.2 implies that y,; 15 a feasible direction, as required. N

it is also straightforward to check for copositivity when );THYO is a 2 X 2 matrix
with nonnegative diagonal elements.

Lemma 4.4. 4 2 x 2 real symmetric malriz with nonnegative diagonal elements s
not copositive if and only if its determinant is negative and its off-diagonal elements
are negative. Moreover, if the matriz is not copositive, the eigenvector corresponding
to the negative elgenvalue ts a positive vector.

Proof. See Cottle et al. {CHLT0, Theorem 3.1). 8
As a consequence of Lemma 4.4 the following lemma is itnmediate.

Lemma 4.5. Assume that Y,'HY, has nonnegative diagonal elements. Moreover.
assume that it has a 2 X 2 principal submatriz with negative determinant and neg-
ative off-diagonal clements. A feasible direction of negative curvature for Y,Iny, is
given by the ny-vector whose nonzero clements are the components of the eigenvector
corresponding to the negative eigenvalue of the 2 x 2 principal submatriz.

Proof. It follows from Lemma 4.1 that it is possible to choose the eigenvector
corresponding to the negative eigenvalue of this principal 2 X 2 submatrix with both
components nonnegative. Hence, this eigenvector extended by zeros in the remaining
(n, — 2) positions is a feasible direction of negative curvature. 1

Now we propose a scheme for the verification of local optimality based on the
lommas above. First, it is shown that artificial constraints cause no additional
difficulties.

5. Artificial Constraints in the Working Set

From the earlier discussion, it is clear that there may exist certain dead points
at which the verification of local optimality is very difficult. In this section we
demonstrate that this inherent difficulty need not b~ exacerbated by the imposition
of artificial constraints.

To simplify the discussion, it will be necessary to distinguish between artificial
and regular constraints. Accordingly, we partition A, and Y; such that

A .
AO:< l") and Yo:(}'“ ),,),

“LtA

b}

where the subseript “1" denotes regular constraints and the subscript “4” denotes
artificial constraints. Let my denote the number of rows of Ay and let m 4 denote
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the number of rows of A,. Also let yg; denote the j-th columnr of Yy and let y,,
denote the j-th column of Y,. When artificial constraints are present, the definition
of a feasible direction will be changed as follows:

A vector pis sald to be a feasible directionif A,p > 0 and Agp > 0.

Note that the sign of the vector A,p is not restricted.
[t is also necessary to use a slightly modified version of assumption 4:

A4’. The point r satisfies the first-order necessary conditions for optimality, i.e.,
there exists a Lagrange multiplier vector u = ( He fla HR ) T, with u, >0,
itg 2 0 and g, = 0, such that r and pu satisfy the KKT equations

nooat At At r —c

A, 0 0 0 —py | b,
Ag 0 0 0 —ur | b
A, 0 0 0 — LA ba

The difference between assumptions A1 and A4’ is that the Lagrange multipliers
of the artificial constraints are required to be zero. If an artificial constraint has
a nonzero multiplier, it could be deleted from the working set to yield a feasible
descent direction. Therefore, assumption A4’ is appropriate for z being a constrained
stationary point. Consequently, a point z is said to be a dead point if it satisfies
assumptions A4’ and A5.

Unfortunately, additional dead points may be added to the problem by imposing
artificial constraints. Consider the problem

minimize  ~IyIg
rER?
subject to ~1<z, <1 (5.1)
~-1<z,< 1.

If the starting point is the origin, no regular constraints are active and artificial
constraints are needed to obtain a positive-definite reduced Hessian. If artificial
bound con:  iuts +; = 0 and z2 = 0 are imposed, assumptions A1 A3, A4’ and
A5 are < .. .d. However, as in problem (2.2), the origin is not a local minimizer
and no { _._i.e direction of negative curvature may be obtained by deleting oniy
one artincial Lo ad.

It r 'ght 5¢_.in necessary that an arbitrary (unknown) number of artificial con-
straints .aast be deleted to give a feasible direction of negative curvature (if one
exists). However, we shall show below that such a direction may be computed by
making only one or two artificial constraints leave the working set.

In order to show this, we determine constraints in the working set that may be
deleted yielding a positive-definite reduced Hessian. This may be determined from
the solution of (3.1) and (3.2), as observed by Gould [Gou86, Theorem 2.3] and
reviewed in the following lemma.
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Lemma 5.1. If a constraint corresponding to a positive diagonal element of Y,THY,
is deleted from A, the resulting reduced Hessian remains positive definite.

Proof. Let y,; correspond to the deleted constraint afz > 8;. Lemma 3.1 implies
that y,; is independent of the columns of Z and it follows from (3.2) that Ay, = e,.
Therefore, a basis for the new nullspace is obtained by adding the column y,, to
Z. Lemma 3.4 implies that ZTHy,, is zero. Hence, the fact that ygﬂyoi is positive
implies that the new reduced Hessian remains positive definite. @

In order to distinguish between artificial and regular constraints we partition
Y.THY, such that

T YIuy, YTny,
vy, = p A
YIny, vruy,

It follows from Lemma 4.3 that if a diagonal element of Y] I, is negative.
a feasible direction of negative curvature can be computed. By Lemma 5.1 it fol-
lows that if a diagonal element of YT HY, is positive, the corresponding artificial
constraint can be deleted and the new reduced Hessian will be positive definite.
Clearly, unless all diagonal elements of YATHYA are zero, either a feasible direction
of negative curvature can be computed or an artificial constraint can be deleted.

Lemma 5.2. If two diagonal elements of YTHY,, say yi Hy,, and yATJHyAJ- are
zero, and y ¥, Hy,, is nonzero, the point x is not a local minimizer. Moreover, either

Yai — Yaj OT Yai + Ya; 15 a feasible direction of negative curvature.

Proof. Direct calculation yields (y. + ya TH (yai + Yay) = —(yai — y,,,J-)TII(yAx -
Yaj) = QyLHyAJ # 0. Hence, either y4i + ya4; 0f yai — ya; is a direction of negative
curvature. Feasibility follows from the relations A,(yai £ y4;) = 0 and Ar(ya £
ij) =0. [ ]

This lemma demonstrates that unless the matrix YT HY , is zero, either a feasible

direction of negative curvature can be computed or an artificial constraint can be
deleted.

Lemma 5.3. If the diagonals of YT Y, are zero, and an element of YRTHYA (say
y,f,][yu) is monzero, the point x is not a local minimizer and a feasible direction of
negative curvature may be computed.

Proof. Let p be a vector of the form a,yn + a,y,;. Direct calculation yields that
p is feasible if a; is nonnegative. The quantity pT Hp may be expressed as

T Hym yLHy,; i
pTHp: ( a; a; ) ( y;‘ Yri Yri'' Ya; ) ( @ )
Yrilly,; 0 a;
Consider the 2 x 2 matrix T given by

T = ( yL”ym ygi”ynj )
yl{i”y,«j 0
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~e - . . e -
Since yp; Hy,; is nonzero, T has one negative and one positive eigenvalue. It has
orthogonal eigenvectors, since it is a real symmetric matrix. Hence, a; and a; may
be chosen so that p is the eigenvector corresponding to the negative eigenvalue,
with a; nonnegative. For those values of a; and «j, the vector p will be a feasible
direction of negative curvature. 1

Clearly, whenever a component of YT HY, is nonzero, either an artificial con-
straint can be deleted or a feasible direction of negative curvature can be computed.
To summarize, the following result holds when artificial constraints are present in
the working set.

Theorem 5.1. If YT HY, has nonpositive diagonal elements, then z is a local min-
imizer of (1.1) if and only if YT HY, is copositive and Y,THY, and YT HY , are zero.

Proof. HYTHY, or YTIIY, are nonzero, there exists a feasible direction of negative
curvature and z cannot be a local minimizer.
Assume that Y, HY, is not copositive. In this case, a feasible direction of
negative curvature may be computed and the local optimality of z is contradicted.
Assume that YT HY, is copositive and Y7 HY, and YT HY, are zero. Using a
similar analysis to that for the regular-constraint case, we can make the following
assertions. As in Lemma 3.2, partition the vector v, such that

and replacz the constraint v, > 0 in (3.4) by vg > 0. If z is not a local minimizer of
(1.1) there must exist an infinite sequence {v*}$2, converging to zero such that

sTYTHY of +

ok kTN T k
+l)++'eT71)* 1)+ )+ HYAUA<0'
+

kTy,T ;
QeTv’i vy Y HY

Kmin + €va
Again, il we consider this inequality as & goes to infinity, we obtain the required
contradiction. §

Ccnsequently, if assumptions A1-A3, A4’ and A5 hold, the artificial constraints
will cause no extra problem in determining if z is a local minimizer. There remains
the hard question of verifying that the matrix Y HY,, is copositive.

6. Computation of Directions of Negative Curvature

In this section, we propose an extension to ICQP methods that will allow progress to
he made at a dead point. Algorithm 6.1 provides a means of computing a direction
of negative curvature by making one or two active constraints inactive. Lemma 6.1
below indicates that the algorithm will terminate with either a direction of negative
curvature or the conclusion that z is a local minimizer.
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Lemma 6.1. Algorithm 6.1 will terminate in at most m, steps. Moreover, if ter-
mination occurs without the computation of a direction of negative curvature, ¢ is
a local minimizer of (1.1).

Proof. At each step, either the algorithm terminates or a constraint is deleted from
the working set. Since there are only m, counstraints to delete, the algorithm must
stop in at most m, steps.

If YTHY, has a positive diagonal element, the corresponding artificial constraint
is deleted. Since this deletion will be repeated until every diagonal element of
YTHY, is nonpositive, we may assume that YT HY, has nonpositive diagonal ele-
ments. At this point, If no direction of negative curvature is computed, the matrices
YTHY, and YT Y, will be zero at each subsequent step of the algorithm. Either
the algorithm detects that the matrix YT HY, is copositive, or a constraint cor-
responding to a positive diagional element of Y, HY} is deleted. If the algorithm
terminates without having computed a direction of negative curvature, the algo-
rithm has determined that a local minimizer has been found with respect to the
constraints that are still present in Agr. However, this conclusion still holds if the
deleted constraints are added again, since deletion of constraints may only increase
the size of the feasible region. &

Hence, if Algorithm 6.1 does not terminate at a given step, a constraint with a
positive diagonal element of Y,7HY, is deleted. Recall that Lemma 5.1 implies that
the new reduced Hessian is positive definite whenever a constraint corresponding to
a positive element of Y,THY, is deleted.

The amount of work needed at each step may be reduced by updating Y, and
Y. THY,. To show this, we assume that the normal of the constraint a‘T:r > i is
deleted from A, corresponding to a positive diagonal element of Y,ZHY,. Partition

A, such that
Ao1
A, = .
’ ( af )

In order to state the results in compact form, let A denote the matrix whose j-th
column is A; in (3.2) and let @ denote the matrix whose j-th column equals 6,.
With this partition of A,, let the induced partition of Y,, A and O be given by

Yo=(Yon yo.‘), A:(/h /\,') and 9:(31 2':)

With this partition equation (3.2) may be written in compact form as

H AT Al Yoo Yo 00
- Yy
A, 0 0 O Ay 0 0 (6.1)
A 0 0 O ~01 -6 I 0
a?‘ 0 0 0 -0y -8 0 1




.

6. Computation of Directions of Negative Curvature 15

Algorithm 6.1. An algorithm for finding a dircction of negative curvature

repeat
Compute )"OTHYO; Initialize m, and mg;
if (m, > 0) then
k — argument satisfying maz; y?; Hy,.;
if (yX Hy,. >0) then
Delete artificial constraint k; go to again; (see Lemma 5.1)
end if;
k — argument satisfying min, yI. Hy .
if (y{,Hy,, <0) then
P— Yak: o0 to exit; (sce Lemma 4.3)
end if;
k,l — arguments satisfying maz, ; Iyzilly”[;
if (yI, My, #0) then
P — Yak T Yyais 2O to exit; (see Lemma 5.2)
else if (myz > 0) then
k,l — arguments satisfying maz; ; ny,-IIyRJ-[;
if (y2, Hyy #0) then
Compute p; go to exit; (see Lemma 5.3)
end if;
end if;
end if;
if (mg = 0) or (mun;; yziHynj > 0) then
z is a local minimizer; go to exit; (see Lemma 4.2)
end if;
k — argument satisfying min; yX. Hyp,;
if (yzkllynk < 0) then
P — Yrk; O to exit; (see Lemma 4.3)
end if;
for i — 1 to my do
for j — i+ 1 to mg do
negdet — (Y HYri Yi;Hynj — YR HYg;? < 0);
if (negdet) and (yZ,-]IyRJ < 0) then
Compute p; go to exit; (see Lemma 4.5)
else if (m, = 2) then
z is a local minimizer; go to exit; (see Lemma 4.4)
end if;
end do;
end do;
k — argument satisfying maz; y;’;l-llym-;
Delete regular constraint k; (see Lemma 5.1)
label again:
until exit occurs;
label exit:
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Let_Yo, A and _@ denote the solution of (3.2) in the next step of Algorithm 6.1.
Then, Y5, A and @ will satisfy the equation

H AT Al Y0 0
A, 0 0 -A =10
Ap 0 0 -0 1

Lemma 6.2. The quantities @ and Y, may be obtained from the solution of (6.1)
as

_ 8..67 _ 97

G = 611 - B?h and YQ = Yol - ———yoééh.

Proof. The matrices @ and Y, satisfy the equation

#H AT AL g Yo 0
A, 0 0 0 -A 0
¥ | = : (6.2)
Ao] 0 0 0 —9 I
«f 0 0 0 0 a?y,

Equations (6.1) and (6.2) imply that the barred quantities may be obtained from
the equations

Y, = Yy, + yoial ¥, (6.32)
A = A, + MaTY, (6.3b)
0 = 0,, +8,aTY, (6.3c)
0 =0, +6,a,Y,. (6.3d)

It follows from Lemma 4.1 that @ = Y,JHY,. Hence, O is a symmetric matrix
with @,; = 6%. Equation (6.3d) implies that 8] + 0,.a7¥, = 0. The fact that
a,-Tz > [3; is associated with a positive diagonal element of Y,,THY0 implies that 8;; is
positive. Substitution in (6.3a) and (6.3c) yields the desired result. &

Hence, only a rank-one modification of Y, and Y(,THY0 is needed at each step of
Algorithm 6.1.

Lemma 6.3. Assume that yoT‘-HyoJ- is zero and yg:-Hym- is positive at one step of
Algorithm 6.1. Also assume that the constraint with normal Ale; is deleted at this
step. At the next step, the column of YOTHYo corresponding to the constraint with
normal Ale; is modified only by deletion of the zero element ngyoj.

Proof. Lemma 6.2 implies that the rank-one modification of column j is zero when

ygllyo]- is zero.

Lemma 8.4. If, in one step of Algorithm 6.1, it holds that the matrices YTHY,
and YTHY, are zero, then they will remain zero.
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Proof. Since both the matrices YTHY, and YT HY, are zero, the only way the
algorithm does not terminate is when a regular constraint corresponding to a posi-
tive diagonal element of YT HY, is deleted. Lemma 6.3 implies that the matrices
YTHY, and YT HY, will remain zero. Only one column of zeros from YT HY, is
deleted at each step. 8

Hence, once the matrices YT HY, and YT HY, are zero, they remain zero.

Lemma 6.5. ['YTHY, is positive semidefinite and YT HY, and YT HY, are zero,
then Algorithm 6.1 will resolve that r is a local minimizer in at most mg steps.

Proof. Lemma 6.4 implies that the matrices YT HY, and YT HY, will remain zero
until the algorithm terminates. Hence, the only iteration when the algorithm does
not halt is when regular constraints corresponding to positive diagonal elements of
YT HY, are deleted. Therefore, at most mp steps may be taken in the algorithm.

Assume that the algorithm terminates without determining that z is a local min-
imizer. It fcllows that a direction of negative curvature must have been computed.
But Lemma 6.2 implies that the matrix @ of the next step is obtained as

. 9. .67
9 - 9 { — 11 ll.
: 0:i
Sylvester’s law of inertia implies that In(@) = In(@) — In(8;;). At the initial
igcration, O is positive semidefinite. The value of the scalar 8;; is positive. Hence,
© will have no negative eigenvalues. 1t follows by induction that no direction of
negative curvature can be computed.

Hence, if YT HY, is positive semidefinite, Algorithm 6.1 determines that z is a
local minimizer.

7. Changes in the Working Set

In this section the changes in the working set are described. In the proposed algo-
rithm, either one or two constraints in A will become inactive. In an ICQP method,
only one constraint is added or deleted at a time. However, we shall give a scheme
that allows deletion of two constraints at a dead point, maintaining the properties
of an ICQP method, i.e., the reduced Hessian having at most none nonpositive
eigenvalue and the working-set matrix having full row rank.

When a direction of negative curvature, p, is computed, the objective function
is strictly decreasing along that direction. The boundedness of ¢ in the feasible
region guarantees that a sufficiently large step along p will violate a constraint. Let
aj; denote the normal of the first constraint that is violated. In order to determine
how to update A, it is necessary to know if ay is dependent on the rows of A. The
following lemma, given by Gill et al. [GMSW88], shows how linear independence
may be checked.
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Lemma 7.1. Consider the equations

H AT
Y= . (7.1)
A 0 v 0
The vector a; is dependent on the rows of A if and only if the vector w is zero in
the solution of (7.1).

Proof. Suppose that a; is dependent on the rows of A. In this case, there must
exist a vector v such that ay = ATv, and w is zero in the solution of (7.1).

Assume that w is zero in the solution of (7.1). It follows that a; = ATy, and a;
is dependent on the rows of A. §

When the algorithm is applied, either one or two constraints leave the working
set. The following sections show how to update the working-set matrix.

7.1. One constraint becomes inactive

Assume that p is given by p = y,; and let a,-Tz > (; denote the constraint that leaves
the working set.

Lemma 7.2, Assume that p is computed by deleting one constraint from the work-
ing set. If ay is independent of the rows of A, it is added to A, while a; ts maintained
in A as an artificial constraint. If ay is dependent on the rows of A, a; and a; are
ezchanged. In either case, the resulting reduced Hessian is positive definite and
working-set matriz has full row rank.

Proof. If a; is independent of the rows of A, the new reduced Hessian remains
positive definite since only one more constraint is added to the working set. Also,
the new working-set matrix has full row rank.

Now assume that ax is dependent on the rows of A. If a, and a; are exchanged,
the rows of the new working set will span the same space as the rows of 4. Hence,
the new reduced Hessian is positive definite. Also, the new working-set matrix has
the same number of rows as the old one, and therefore it has full row rank. B

Hence, after having either added a; or exchanged a; and a;, the new reduced
Hessian is positive definite and the new working-set matrix has full row rank.

7.2. Two constraints become inactive
Assume that p is given by p = oy, + @;¥,;, where a; and «; are both nonzero. Let

a; and a; denote the normals of the constraints which leave the working set.

Lemma 7.3. Assume that a;, = AJv, + a;v; + a;v;. Then it cannot hold that
v, =v; =0

e ———— |
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Proof. Assume that a; = AJv,. Premultiplication by pT yields pTa; = 0. But this
could not hold since @; becomes violated when a sufficiently large step along p is
taken.

Lemma 7.4. Assume that p is computed by making two active constraints inactive.
If ay. is independent of the rows of A, it is added to A, while a; and a; are maintained
as artificial constraints. If ay is dependent on the rows of A and |v;| > |v}|, a; and
a; are exchanged. If ai is dependent on the rows of A and |vi| < |vj|, ax and a; are
exchanged. In each case, the new reduced Hessian ts positive definite and the new
working-set matrir has full row rank.

Proof. Assume that ay is independent of the rows of A. The new reduced Hessian
remains positive definite since only one more constraint is added to the working set.
Also, the new working-set matrix has full row rank.

Assume that ax is dependent on the rows of A. Lemma 7.3 implies that at least
one of the scalars v; and v; is nonzero. Hence, by performing the specified exchange,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian will be positive definite. Also, the new working-set matrix
has the same number of rows as the old one, and therefore it has full row rank. 1

Hence, after having either added aj or exchanged either ax and a; or ai and a;,
the new reduced Hessian is positive definite and the working-set mairix has full row
rank.

8. Verification of Local Optimality

In this section we describe a complete algorithm for checking if a given dead point z
is a local minimizer. In Algorithm 8.1, a direction of negative curvature is found by
making one or two constraints leave the working set at a time. If no such direction
exists, Algorithm 6.1 yields the result that z is a local minimizer.

If constraints corresponding to positive diagonal elements of Y HY,, are deleted
in Algorithm 6.1, assumption A2 will no longer hold. In this case, if a direction of
negative curvature is computed, the resulting maximum feasible step could be zero
and there is a danger of cycling.

However, if Algorithm 8.1 terminates, it will provide either a feasible direction
of negative curvature along which a nonzero step may be taken or the information
that z is a local minimizer. As shown in Section 6, the algorithm will terminate
with the information that z is a local minimizer in the special case when the matrix
YT HY, is positive semidefinite.

9. Conclusions

When solving a general quadratic programming problem there may exist certain
dead points at which it is very difficult to verify optimality. We emphasize that this
difficulty is inherent to the problem, and is independent of the solution method.
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Algorithm 8.1. An algorithm checking for local optimality

repeat
Apply Algorithm 6.1;
local _minimizer — Algorithm 6.1 implies that z is a local minimizer;
if (local _minimizer) then
go to exit;
else
ay — constraint that is first violated along p;
o — maximum feasible step along p;

H AT
Solve ’ O I i (see Lemma 7.1)
A 0 v 0

indep — (|jw]| > 0);
nr-inactiv — number of constraints that become inactive;
if (nr-inactiv=1) then
a; — constraint that becomes inactive;
if (indep) then
Add ay;
else
Exchange a4 and «¢;; (see Lemma 7.2)
end if;
else
a;,a; — constraints that become inactive;
if (indep) then
Add ag;
else
if (Jo;| > |v;]) then
Exchange a; and a;; (see Lemma 7.4)
else
Exchange ax and aj;
end if;
end if;
end if;
if (ar > 0) then
T —1r+app;
local .minimizer — false;
go to exit;
end if;
end if;
until too many iterations;
label exit:
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[n this paper, the verification of optimality has been discussed within the con-
text of an inertia-controlling method. We have derived a computational method
appropriate for general ICQP methods, that will attempt to determine if a dead
point is a local minimizer. The use of artificial constraints may introduce additional
dead points. It has been shown that the new procedure does not terminate at such
points, unless they are local minimizers.

However. the verification of optimality in the general case is an NP-hard problem,
so we would not expect to find a procedure capable of solving a general problem
In a reasonable amount of computational effort. In our scheme, there is a potential
danger of cycling, and techniques similar to anti-cycling procedures used in linear
programming are needed to resolve this problem.
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